Responsible AI in Healthcare – Ensuring Quality Care for All

Maia Hightower, MD, MPH, MBA, CEO, Co-Founder Equality Al Maia.Hightower@equalityai.com

ALGORITHMIC BIAS...THE DARK SIDE OF AI

THE PROBLEM

"Al can be sexist and racist — it's time to make it fair" 1

Dissecting racial bias in an algorithm used to manage the health of populations

Pre: Black Patients were 50% less likely to be referred to case management despite being equally sick

by Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan

THE SOLUTION

Fairness Metric: Statistical Parity
Bias Mitigation Method: Better Proxy Label

Fair AI ML Tools Eliminates the AI Racial Bias By Repairing the Model

Post: Black Patients were just as likely to be referred to specialist when equally sick

Lost Opportunity Cost of a Biased Algorithm

80M

of Patients Exposed to Biased
Case Management Algorithm

Approx.

\$1B

\$146M Direct Healthcare Cost Savings Opportunity from CCM

\$830MI CMS Chronic Care
Management FeeFor-Service Charge
Capture

https://www.ajmc.com/view/cost-effectiveness-of-case-management-a-systematic-review

https://signallamphealth.com/2023-medicare-cms-chronic-care-management-ccm-cpt-code-update

14 studies evaluated an algorithm effect on health or outcomes stratified by race/ethnicity

Impact of Healthcare Algorithms on Racial Disparities in Health and Healthcare

Clinical Category	Algorithm	Key Question	Study	Study Design ^a	Disparities in Health outcome ^b	Disparities in Access ^b	Disparities in Quality ^b
	eGFR ^c	KQ 2	Ahmed 2021 ²¹	Modellingd	*	1	*
	eGFR ^o	KQ 2	Inker 2021 ²³	Modellingd	*	*	1
	eGFR°	KQ 2	Casal 202161	Modellingd	*	t	t
	eGFR°	KQ 2	Duggal 202162	Modellingd	1	*	1
	eGFR°	KQ 2	Hoenig 2022 ⁶⁴	Modellingd	*	*	t
	eGFR°	KQ 2	Inker 2021 ⁸³	Modellingd	•	•	t
Kidney function	eGFR ^c	KQ 2	Mahmud 2022 ⁶⁷	Modellingd	1	*	*
measurement	eGFR°	KQ 2	Miller 2021a ⁶⁸	Modellingd	*	*	t
	eGFR ^c	KQ 2	Panchal 2022 ⁶⁹	Modellingd	1	1	*
	eGFR°	KQ 2	Shi 202171	Modellingd	1	*	*
	eGFR°	KQ 2	Tsai 2021 ⁷²	Modellingd	1	*	*
	eGFR°	KQ 2	Yap 2021 ⁷⁴	Modellingd	*	*	1
	eGFR ^c	KQ 2	Zelnick 202175	Modellingd	1	*	t
	eGFR°	KQ 2	Coresh 2019 ⁷⁸	Modelling ^d	*	*	t
Kidney transplant allocation	Kidney Donor Index	KQ 2	Julian 201781	Modellingd	*	*	1
	Revised KAS ^c	KQ 1	Zhang 2018 ⁵⁸	Pre-post	*	1	*
B 24.00	SOFA	KQ 1	Miller 2021b ⁵¹	Modellingd	*	t	*
Severity of illness scores for Crisis Standards of Care	SOFA, LAPS2	KQ 1 and 2	Ashana 202188	Modellingd	1	1	*
Standards of Care	APACHE Iva, OASIS, SOFA	KQ 1	Sarkar 2021 ⁵⁴	Modelling ^d	1	*	*
Prostate Canaca Bick	PCPT°	KQ 1	Carbanaru 2019 ⁵⁷	Modellingd	*	*	1
Prostate Cancer Risk	KPCC RC°	KQ 1	Presti 2021 ⁵³	Modellingd	*	*	4

	Clinical Category	Algorithm	Key Question	Study	Study Design ^a	Disparities in Health outcome ^b	Disparities in Access ^b	Disparities in Quality ^b
	Liver transplantation	Donor Risk Index	KQ 2	Shores 201386	Modellingd	*	*	Ť
	Cardiovascular risk	ASCVD°	KQ 2	Weale 2021 ⁷³	Modellingd	*	*	†
		Modified ASCVD ^c	KQ 2	Topel 2018 ⁷⁹	Modelling ^d	t	*	*
		ASCVD ^e	KQ 2	Fairman 2020 ⁷⁶	Modelling ^d	t	t	*
		Pooled cohort equations	KQ 2	Yadlowsky 2018 ⁸⁰	Pre-post	*	*	Ť
		Framingham risk score ^c	KQ 2	Fox 201682	Modellingd	*	t	*
		Framingham risk score ^c	KQ 2	Drawz 201287	Modellingd	*	*	Ť
	Lung Cancer Screening	USPSTF-2013	KQ 1	Pasquinelli 2021 ⁵²	Modelling ^d	*	1	*
		USPSTF-2013	KQ 1	Han 2020 ⁵⁶	Modellinge	*	*	Ť
		USPSTF-2020	KQ 1	Landy 202166	Modellingd	t	t	*
	Lung Transplant Allocation	Lung Allocation System	KQ 1	Wille 2013 ⁵⁹	Pre-post	*	4	*
-	Lung Function	GLI Spirometry Equation	KQ 2	Baugh 202260	Modellingd	*	*	†
-		GLI Spirometry Equation	KQ 2	Elmaleh-Sachs 2021 ⁶³	Modelling ^d	t	*	*
	Anticoagulation	Warfarin dosing algorithms ^c	KQ 2	Kimmel 2013 ⁸⁵	RCT	1	*	*
		Warfarin dosing algorithms ^c	KQ 2	Limdi 2015 ⁸⁴	Prospective cohort	t	*	*
_		CHA ₂ DS ₂ -VASc	KQ 2	Kabra 2016 ⁸³	Modelling ^d	*		Ť
	Emergency Department Triage	HEART Pathway	KQ 1	Snavely 202155	Pre-post	+ +	*	† ^f
	Other	Novel algorithm for high-risk care management	KQ 1 and 2	Obermeyer 2019 ^s	Modellingd	*	t	*
		Natural language processing algorithm	KQ 1 and 2	Thompson202189	Modelling ^d	*	*	t

Bias Occurs Throughout The Al Lifecycle

Bias Mitigation Methods Applied Throughout The Al Lifecycle

Social Mitigation Methods

Diverse Teams

Al Governance

- •Local Policy and Procedures
- Stakeholder Engagement
- •Including Patients, Clinicians, Leadership, Ethicists

Regulatory Environment

- Europe
- •US
- •FDA QS & CBMP
- HHS/ONC Proposed Rule

Data creation
Origination of data
used to train and
evaluate an AI model

Model deployment
Real-world
implementation and
use of the AI model

AI life cycle

Model evaluation
Testing of the AI
model to evaluate
performance and
efficacy

Model development Iterative algorithmic formation process to build the AI model

Data acquisition

of data to train and

evaluate the AI model

Gathering or purchasing

Technical Mitigation Methods

Responsible/Ethical Al Frameworks and Toolkits

- DHHS Trustworthy Al Playbook
- Promoting the Use of Trustworthy AI in the Federal Government
- NIST AI Risk Management Framework

Bias Mitigation for data and ML Methods

- EqualityML Toolkit
- Al Fairness 360
- Fairlearn

Monitoring for Outcome

Ng, M.Y., Kapur, S., Blizinsky, K.D. et al. The Al life cycle: a holistic approach to creating ethical Al for health decisions. Nat Med 28, 2247–2249 (2022). https://doi.org/10.1038/s41591-022-01993-y cary, M. P., Jr., Hohmann, N. S., Hohmann, L. A., et al. (2023). Mitigating Racial And Ethnic Bias And Advancing Health Equity In Clinical Algorithms: A Scoping Review. Health Affairs, 42(10). https://doi.org/10.1377/hithaff.2023.00553

The AI Promise: Unlocking Unprecedented Value in Healthcare

Value
$$=\frac{\mathbf{Q}}{\mathbf{C}}\times\mathbf{E}$$

Value in healthcare

Value is defined as the ratio of quality over cost multiplied by the patient experience

Quality in healthcare

Quality refers to the effectiveness of treatment and patient outcomes

Cost in healthcare

Cost includes the total healthcare expenses for diagnosis, treatment, and care

Patient experience

Patient experience includes factors like waiting times, communication with doctors, amenities, and overall satisfaction

The Total Cost of Deployment of Al Without an Al Safety and Management System

1. Bias in Al Systems:

- Risk of Inequitable Care: Amplify disparities in diagnosis/treatment for underrepresented groups.
- Regulatory and Compliance Risks: Expose healthcare providers to legal challenges, regulatory penalties, and reputational damage from biased AI.

2. Misalignment with AI Transformation and Health Equity Goals:

• Missed Opportunity Cost for Health Equity: All investments not aligned with health equity goals limit transformative potential.

3. Underperformance of Al Investments:

- Al Benefits not Fully Realized: Lack of strategic alignment and governance restricts Al's potential in improving outcomes and reducing costs.
- Lack of Transparency in AI Models: Poor AI system management erodes trust, hindering adoption and utilization.

Stage 1: Equality Al Foundations is the starting point for most healthcare organizations, offering a structured approach to ensure effective and ethical Al integration with enterprise strategy and Al governance capability. Al model audits are performed by Equality Al using Equality Al technology.

Equality Al Products: For Each Stage of Responsible Al Transformation

Stage 2: Equality Al Builder provides all the benefits of Foundations plus access to the Equality Al Studio, enhancing the team's capabilities in developing responsible Al ML models, and empowering the data science team with Responsible Al tools and training. It also includes an enhanced Al model audit, measuring both Al model technical performance and adherence to Al governance process using the NIST Al Risk Management Framework or ISO/IEC 42001 Al Management System.

Stage 3: Equality Al Enterprise combines the features of the Foundations and Builder stages with advanced functionalities of the Equality Al Studio Enterprise version, offering comprehensive management of Al models, outcomes dashboard, configuration and implementation support, Al analytics and dashboarding tools, and custom API integration with the organization's data ecosystem.

Equality AI Foundations

A Structured process that establishes the foundation to a responsible AI transformation aligned with enterprise strategy and health equity. AI model audits are performed by Equality AI using Equality AI technology.

Discovery Phase

- Stakeholder Interviews
- Data & Technology Audit
- Current Process Review

Al Strategy & Al Governance

- Al Strategy Formulation
- Al Governance Framework
- Roadmap Creation

Responsible Al Foundations Complete

Al Transformation Roadmap Recommendations

- Technical Gaps
- Operationalization Gaps
- Training and Capacity Building

Kickoff

- Executive Sponsor
- · Al Strategy Core Team

Al Model Audit (2) by Equality Al Technology

Sub-population analysis for bias, performance, and compliance with Al governance process

Next Step: Equality AI Builders

AI Strategy Alignment: Focus on High-Value Domains & Health Equity

Al Strategy Alignment

Value =
$$\frac{Q}{C} \times E$$

Prioritizes Health Equity

Serve all patient populations fairly
Advances inclusive healthcare

Al Governance Committees

RESPONSIBLE AI AUDIT PROCESS

RESPONSIBLE AI FRAMEWORK

ROBUST & RELIABLE

RESPECTFUL OF PRIVACY

SAFE & SECURE

FAIR & IMPARTIAL

TRANSPARENT & EXPLAINABLE

RESPONSIBLE & ACCOUNTABLE

Technical Audit of AI Models

- Equality AI uses our technology to measure biases and model performance
- Provide actionable insights for Al governance team and data scientists to improve the model

Process Audit: Adherence to Institution Al Governance Processes

- Ensure effective and responsibly managed AI initiatives
- Critical tool for Al governance team to oversee and manage Al lifecycle

EQUALITY AI TECHNOLOGY: 🤰 equalityAlstudio

- Healthcare real-world data is messy: biased and incomplete
- **Data Scientists are siloed from** the Clinical SME
- Don't know how to evaluate for **Fairness**
- The regulations are moving fast: FDA. NIST. ONC...

- **Audit & Decision-Making Log**
 - Capture, store, and aggregate decisions
 - Share with stakeholders including regulatory agencies (FDA, etc.)

- AI/ML Collaboration for ALL
- A studio for data scientists and stakeholders to collaborate.
- Transparency and validation through diverse teams

- Fair ML **Evaluation Tools**
 - Fairness Metrics
 - Bias Mitigation Methods
 - Python Notebook Template
 - Responsible AI Wiki

- Tutorials
- Tutorials embedded in workflow, always available when needed
- **Chat Assistant**
 - Fairpaw, conversational fair ML assistant.
 - Chat-GPT Powered
 - Fair Code Co-pilot (TBD)

We each have a ROLE to play in ensure the future of AI enabled healthcare is equitable and fair.

Role of Patients/Community/Policy Makers

Provide feedback

Patients can test AI systems and provide feedback on their strengths and weaknesses to improve them

Demand Transparency and Accountability

Patients should demand transparency and ask the following questions:

- 1. Dataset Representativeness
- 2. Al Model Performance by Subpopulation
 - 3. Fairness, Accuracy, Outcomes

Advocate for Responsible Al

Patients can advocate for development and use of AI that benefits patients and society in a responsible manner

The community and patients have an important role to play in ensuring Al systems in healthcare are safe, effective and aligned with human values.

Role of Clinicians & Experts

Understand limitations of AI & Human in the Loop

Clinicians should be aware of the limitations of AI systems to provide the best possible care to patients.

Get Involved in Al Development

Clinicians should participate in the AI Lifecycle to increase the relevance and accuracy of the models.

Provide oversight

Clinicians should provide oversight of AI systems through AI Governance to ensure they are operating as intended and providing safe and effective recommendations.

Speak up about concerns

If clinicians have concerns about an AI system, they should voice those concerns to colleagues, administrators, regulators etc.

While AI promises many benefits, clinicians play a critical role in ensuring these systems are used responsibly and safely.

Role of Al Developers & Researchers

Design systems with Subpopulations in Mind

Al developers should develop expertise in Responsible Al methods: Fairness, bias mitigation

Test thoroughly

Extensive testing of AI systems using techniques like cross-validation helps identify bugs, edge cases, and training gaps to build more robust models.

Listen to stakeholders

Getting regular feedback from users, domain experts, and other stakeholders helps AI developers build systems that address real needs.

Transparency Through Documentation

Clear documentation of development workflows, system design, testing, and maintenance helps ensure transparency and enable collaboration.

Responsible AI requires AI developers to take great care through the full development lifecycle to build systems that are ethical, safe, and serve all stakeholders.

Role of Healthcare Leaders

Al Strategy Alignment

Align Al strategy for total value and commit to health equity

Al Governance

Oversee AI systems through policies and procedures

AI Audit

Evaluate AI systems for biases and harms with Sub-population analysis for bias, performance, and compliance with AI governance process

EQUALITY AI MANIFESTO & PROMISE

Data scientists are the newest members of the healthcare team. As such, the Hippocratic Oath applies...First do no harm. Therefore, we pledge to adhere to the following ethical code and swear to fulfill, to the best of our ability and judgement, this covenant:

- We respect that algorithms have power; over life and death; treatment and non-treatment; distribution of scarce resources. This awesome responsibility must be faced with great humbleness and awareness of our privilege.
- We respect healthcare data privacy and security. We won't lose sight that each data point is a unique human experience digitally recorded.
- We respect the hard-won scientific gains of those in whose steps we walk and gladly share such knowledge.
- We will not be ashamed to say, "I don't know...yet", and will call on our colleagues when the skills of others are needed.
- We value a culture that combines an agile mindset and processes with authenticity, personal wellness, and team fulfillment.

May we always act to preserve the finest traditions of the healthcare calling. We bring modern technology methods to solve healthcare's most challenging problems: inequity, bias, and unfairness. We believe in AI for good, AI that is fair, and AI for equity.

Questions?

Maia Hightower, MD, MPH, MBA CEO, Co-Founder Equality Al Maia.hightower@equalityai.com

