Advancing Toward Recovery from Post-Acute Sequelae of SARS-CoV-2 Infection (PASC)

NIH’s RECOVER Initiative

Progress Update

December 15, 2022
Frequency of PASC varies widely depending on time from infection and severity of illness (e.g., 5-80%).

Heterogeneous symptom set.

Groff et al., *JAMA Network Open*, October 2021

At six month time point 55% were judged to have at least one sequelae of COVID-19 infection.
Short- and Long-term Rates of Post-acute Sequelae of SARS-CoV-2 Infection: A Systematic Review
(57 studies, Total n=250,351 COVID-19 survivors, 79% hospitalized)
At six month time point 55% were judged to have at least one sequelae of COVID-19 infection.

- Frequency of PASC varies widely depending on time from infection and severity of illness (e.g., 5-80%).
- Heterogeneous symptom set.
How prevalent is PASC?

Estimated Global Proportions of Individuals With Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021

Proportion of Individuals Who Survived Symptomatic SARS-CoV-2 Infection and Who Experienced at Least 1 of the 3 Long COVID Symptom Clusters in 2020 and 2021

The estimated mean Long COVID symptom cluster duration was 9.0 months (95% UI, 7.0-12.0 months) among hospitalized individuals and 4.0 months (95% UI, 3.6-4.6 months) among nonhospitalized individuals.

JAMA. Published online October 10, 2022. doi:10.1001/jama.2022.18931
Persistent symptoms after 12 weeks of acute infection are **3.0% based on tracking specific symptoms, to 11.7% based on self-classification** of long COVID, using data to 1 August 2021.

Among study participants **with COVID-19, 5.0% reported any of 12 common symptoms** 12 to 16 weeks after infection; however, **prevalence was 3.4% in a control** group of participants without a positive test for COVID-19, demonstrating the relative commonness of these symptoms in the population at any given time.

Among study participants with COVID-19, **3.0%** experienced any of 12 common symptoms for a **continuous period of at least 12 weeks** from infection, compared with **0.5% in the control** group.

Prevalence of **self-reported long COVID is 11.7%** of study subjects experiencing long COVID (based on self-classification rather than reporting one of the 12 common symptoms) 12 weeks after infection, falling to 7.5% when considering long COVID that resulted in limitation to day-to-day activities; these percentages increased to 17.7% and 11.8% respectively when considering only participants who were symptomatic at the acute phase of infection.

Prevalence was highest in **females, adults aged 50 to 69 years, people with a pre-existing health condition, and those with signs of high viral load at the time of infection**.
How does prevalence of PASC vary by variant?

Approximately 4% of triple-vaccinated adults reported experiencing long COVID 12 weeks after being infected with the Omicron BA.1 or BA.2 variants.

Triple-vaccinated

<table>
<thead>
<tr>
<th>Severity</th>
<th>Delta</th>
<th>Omicron BA.1</th>
<th>Omicron BA.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any severity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity-limiting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Double-vaccinated

<table>
<thead>
<tr>
<th>Severity</th>
<th>Delta</th>
<th>Omicron BA.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity-limiting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Followed patients in Cerner Electronic Health Records for incident conditions occurring after 30 days of infection vs. control group without infection. Hospitalization status not defined.

- 38% of previously infected individuals developed an incident condition compared with 16% of controls.
- One in five COVID-19 survivors > 18 years old experienced an incident condition that might be attributable to previous COVID-19.
- One in four survivors aged > 65 did so.

correctCOVID.org
Hypothesized etiologies of PASC

- PASC is very likely a set of multiple conditions with varied underlying causes

- **Examples of hypothesized causes:**
 - Persistence of SARS-CoV-2 virus or antigens and/or reactivation of other viruses stimulating ongoing immune response
 - Viral infection and/or antigenic stimulation setting in motion a **dysregulated immune response** affecting various organs and tissues
 - Viral infection and/or inflammatory responses cause **damage to organs and tissues** that in turn results in dysfunction (e.g., neurologic, cardiac, pulmonary, renal, metabolic, GI)

2. https://www.nature.com/articles/s41590-021-01113-x
4. https://www.biorxiv.org/content/10.1101/2022.01.07.475453v1
Patients with Long Covid had:

- highly activated innate immune cells,
- lacked naive T and B cells and
- showed elevated expression of type I IFN (IFN-β) and type III IFN (IFN-λ1) that remained persistently high at 8 months after infection.
Potential role for autoimmunity in PASC.

• Auto antibodies to multiple self antigens are observed during acute COVID-19 infection.
 • Diverse functional autoantibodies in patients with COVID-19 (Nature) 10.1038/s41586-021-03631-y ;
 • New-onset IgG autoantibodies in hospitalized patients with COVID-19 (Nat Commun) 10.1038/s41467-021-25509-3;

A number of small studies suggesting autoimmunity in some persons with PASC.

• Dysregulated autoantibodies targeting vaso- and immunoregulatory receptors in Post COVID Syndrome correlate with symptom severity. DOI: 10.3389/fimmu.2022.981532
• Autoimmune Effect of Antibodies against the SARS-CoV-2 Nucleoprotein DOI: 10.3390/v14061141
• Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases DOI: 10.3389/fimmu.2020.617089
• Autoimmunity is a hallmark of post-COVID syndrome doi: 10.1186/s12967-022-03328-4
• Persistent Autoimmune Activation and Proinflammatory State in Post-Coronavirus Disease 2019 Syndrome DOI: 10.1093/infdis/jiac017
• Persistent IgG anticardiolipin autoantibodies are associated with post-COVID syndrome DOI: 10.1016/j.ijid.2021.09.079
Elevated vascular transformation blood biomarkers in Long-COVID indicate angiogenesis as a key pathophysiological mechanism

<table>
<thead>
<tr>
<th>Feature Ranking</th>
<th>% Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyte</td>
<td></td>
</tr>
<tr>
<td>1 ANG-1</td>
<td>21.7</td>
</tr>
<tr>
<td>2 P-SEL</td>
<td>15.4</td>
</tr>
<tr>
<td>3 MMP-1</td>
<td>12.5</td>
</tr>
<tr>
<td>4 VE-Cad</td>
<td>9.3</td>
</tr>
<tr>
<td>5 Syn-1</td>
<td>7.8</td>
</tr>
<tr>
<td>6 Endoglin</td>
<td>6.0</td>
</tr>
<tr>
<td>7 PECAM-1</td>
<td>5.4</td>
</tr>
<tr>
<td>8 VEGF-A</td>
<td>5.4</td>
</tr>
<tr>
<td>9 ICAM-1</td>
<td>5.3</td>
</tr>
<tr>
<td>10 VLA-4</td>
<td>3.3</td>
</tr>
<tr>
<td>11 E-SEL</td>
<td>3.1</td>
</tr>
<tr>
<td>12 Thrombomodulin</td>
<td>1.8</td>
</tr>
<tr>
<td>13 VEGF-R2</td>
<td>1.7</td>
</tr>
<tr>
<td>14 VEGF-R3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

dimensionality reduction of all fourteen significant biomarkers, shows separation cluster of Long-COVID outpatients with some mixing with acutely ill COVID-19 inpatients and healthy control subjects

dimensionality reduction of two selected biomarkers, ANG-1 and P-SEL, showed distinct separation and clustering of Long-COVID outpatients from acutely ill COVID-19 inpatients and healthy control subjects
Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation

Authors
Anthony Fernández-Castañeda,
Peiwen Lu, Anna C. Geraghty, ...,
Avindra Nath, Akiko Iwasaki,
Michelle Monje

Correspondence
akiko.iwasaki@yale.edu (A.I.),
monje@stanford.edu (M.M.)

In brief
Mild respiratory COVID causes neuroinflammation and multi-lineage cellular dysregulation in the central nervous system, a phenomenon mirroring cancer-therapy-related cognitive impairment.
Is there persistence of viral material?

SARS-CoV-2 infection and persistence throughout the human body and brain

Daniel Chertow (chertowd@cc.nih.gov)
National Institutes of Health https://orcid.org/0000-0002-1675-1728

Autopsies on 44 COVID-19 patients from acute infection through over 7 months following symptom onset.

- SARS-CoV-2 is widely distributed even in patients who died with asymptomatic or mild infection
- Virus replication is present in multiple pulmonary and extrapulmonary tissues early in infection
- RNA in multiple anatomic sites, including brain, for up to 230 days after symptom onset.
- Paucity of inflammation or viral cytopathology outside the lung

Chertow et al. Research Square (preprint), Posted December 2021
Exocytic Vesicle (EV) numbers (i) and EV-linked Spike protein (ii) in the plasma from individuals with and without PASC as measured by Nanoparticle Tracking Analysis and ELISA, respectively.
NIH RECOVER Initiative

Goal
Rapidly improve our understanding of and ability to predict, treat, and prevent PASC

Key Scientific Aims

1. Understand clinical spectrum/biology underlying recovery over time
2. Define risk factors, incidence/prevalence, and distinct PASC sub-phenotypes
3. Study pathogenesis over time and possible relation to other organ dysfunction/disorders
4. Identify interventions to treat and prevent PASC

Guiding Principles

- Patient-centered, participants as partners
- National Scale with Inclusive, diverse participation & community engagement
- Platform protocols, standardized methodologies, and common data elements
- Adaptive approaches based on emerging science
Key Progress in 2022 (as of September)

- ~10,000 adult patients enrolled in past 9 months
- 8 longitudinal clinical cohort studies and related sub-studies
- 42+ pathobiology studies
- 5 master protocol-driven platform clinical trials under development
- EHR study results: ~40 reports (17 draft, 9 submitted, 11 preprint, 3 published)

- Data repositories and shared analytic workbench; initial RECOVER data release to consortium in process
- Study of potential PASC biomarker
- Launched mobile health platform; designed patient registry
- Collaborative patient community engagement and research seminar series
- RECOVER-All of Us precision medicine collaboration
Proportion of RECOVER participants developing PASC symptoms of varying severity

- **EHR Studies:**
 - Hospitalization for COVID-19 and PASC incidence
 - Incidence of PASC over time higher among people who were hospitalized for COVID-19 (8-20%) than non-hospitalized (4-8%)
 - PASC incidence in children
 - 3.7% SARS-CoV-2 infected children go on to develop PASC ([Link](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359016/), *JAMA Pediatrics*)

- **Cohort Study:** Significant % of adult participants enrolled during acute infection report persistent and/or new onset symptoms months after acute infection compared to uninfected individuals
 - Among participants recruited during acute infection, 20-30% report symptoms at 3 months, whereas 5-15% of uninfected participants develop these symptoms
RECOVER Study: Preliminary Findings

What are the impacts of different variants and vaccination?

EHR Studies:
- Higher peaks of PASC early in the pandemic (a period with more severe acute illness) and with Delta variant (Link: In preparation)
- **Vaccination decreases a patient’s predicted probability of PASC** (Link: The Lancet and Link: Long COVID Risk and Pre-COVID Vaccination: An EHR-Based Cohort Study from the RECOVER Program)
- **Vaccination protects against cardiac complications of SARS-CO-V-2 infections in male teens and young adults:** Teen boys (12-17) and young men (18-29) had 2-6x and 7-8x respective higher risk of heart complications after COVID-19 infection compared to after vaccination (Link: Morbidity and Mortality Weekly Report)

Cohort Studies:
- Predominant symptoms are fairly consistent across infection waves
- Lower overall rates of symptoms observed in participants infected in later years
- Vaccinated individuals infected with Omicron variant continue to be at risk for PASC, though the chance of PASC is lower than individuals infected pre-Omicron
PASC Master Protocol-Driven Platform Clinical Trials Span Range of Dominant Symptom Clusters and Proposed Etiologic Pathways

- Solicited clinical trial concepts from clinical research community
- Analyzed data from RECOVER clinical cohorts to identify major symptom clusters and inform trial endpoint selection
- Engaged key stakeholders and agencies in development process: patients, clinicians, FDA, CMS, PCORI and others as appropriate, including industry
- 5 platform protocols under development and, as appropriate, regulatory review and spanning major PASC symptom clusters and proposed etiologic pathways

RECOVER Clinical Trial Platforms Portfolio

Staged roll-out starting end of 2022 and early 2023
RECOVER: Researching COVID to Enhance Recovery

What is PASC?

SARS-CoV-2 is a virus that can infect the body and is referred to as a SARS-CoV-2 infection. Recovery from SARS-CoV-2 infection can vary from person to person.

Acute Infection:
Most people recover quickly from acute SARS-CoV-2 infection. People who have a PASC (Post-Acute COVID-19 Syndrome) may experience symptoms for 2 or more months after initial infection. Typical symptoms include:

- Cough
- Shortness of breath
- Chest pain
- Difficulty breathing
- Fatigue
- Muscle and body aches
- Headache
- Sore throat
- Loss of taste or smell

Chronic Systemic Inflammatory Condition (CSIC)

Some people may develop a chronic systemic inflammatory condition (CSIC) that lasts for months or even years after initial infection. This can manifest as:

- Joint pain and muscle aches
- Fatigue
- Shortness of breath
- Headache
- Dizziness
- Fainting
- Loss of appetite
- Loss of weight
- Dry mouth

To ensure this research is informed by patients, RECOVER will engage regularly with people who have experienced SARS-CoV-2 infection.

What types of updates would you like to receive?

- Information about volunteering for RECOVER studies
- RECOVER updates and the latest research findings
- Announcements on related research funding, training, and technical assistance opportunities

Together we can learn more. The more voices.

recoverCOVID.org